חATIBIA UחIVERSITY of SCIERCE ARD TECHOOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES SCHOOL OF AGRICULTURE AND NATURAL RESOURCES SCIENCES DEPARTMENT OF AGRICULTURAL SCIENCES AND AGRIBUSINESS

QUALIFICATIONS: BACHELOR OF SCIENCE IN AGRICULTURE BACHELOR OF SCIENCE IN HORTICULTURE		
QUALIFICATIONS CODE: O7BAGA	LEVEL: 7	
COURSE CODE: ICA511S	COURSE NAME: INTRODUCTION TO CHEMISTRY	
SESSION: JULY 2023	PAPER:	THEORY
DURATION: 3 HOURS	MARKS:	120

SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER:	MS. PAULINA NDINELAGO NAUPU
MODERATOR:	MRS. LUCIA TUYENI-KELAO KAFIDI

INSTRUCTIONS

1. Answer all the questions.
2. Write neatly and clearly.
3. Mark all answers clearly with their respective question numbers.
4. All written work MUST be done in blue or black ink.
5. No books, notes and other additional aids are allowed.

PERMISSIBLE MATERIALS

1. Calculator
2. Examination paper
3. Examination script

THIS QUESTION PAPER CONSISTS OF 4 PAGES (Excluding This Front Page)

QUESTION 1

Write the name/formula of the following:
1.1 HBr
\{2\}
$1.2 \mathrm{HNO}_{3} \quad\{2\}$
$1.3 \quad \mathrm{H}_{2} \mathrm{SO}_{3}$
\{2\}
1.4 Potassium hydroxide $\{2\}$
[8]

QUESTION 2

2.1 How many mL of $2.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ are needed to make 400 mL of $0.11 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
\{4\}
2.2 24.6 mL of a 0.50 M monoprotic acid solution was titrated with a 0.18 M NaOH solution
What is the volume of NaOH that should be added to the solution in order to reach the
equivalence point?
2.3 Suppose you want to prepare 250 mL of $0.100 \mathrm{M} \mathrm{CuSO}_{4}$ solution by diluting a 1.00 M
CuSO_{4} stock solution. What volume of CuSO_{4} do you need?
2.4 What is the mass of 0.30 moles $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$

QUESTION 3

3.1 A rock has a mass of 20.5 g and a volume of 15.05 cm 3 . What is its density?
3.2 A rock has a density of $18.3 \mathrm{~g} / \mathrm{cm}^{3}$. If you have a rock bar with a volume of $43.9 \mathrm{~cm}^{3}$, what is its mass?

QUESTION 4

4.1 If a compound has an empirical formula of CH_{2} and a molar mass of $84 \mathrm{~g} / \mathrm{mol}$, what is its molecular formula
4.2 A compound has an empirical formula of $\mathrm{C}_{2} \mathrm{H}_{5}$ and a molar mass of $58 \mathrm{~g} / \mathrm{mol}$. What is its molecular formula?

QUESTION 5

5.1 Consider copper (II) bromide CuBr 2 , calculate the percentage of copper and bromide

5.2 What mass of oxygen gas is required to completely react with 25.0 grams of iron to produce iron(III) oxide, Fe 2 O 3 according to the following balanced equation: $4 \mathrm{Fe}+3 \mathrm{O}_{2}$ $\rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}$?

QUESTION 6

Balance the following equations
$6.1 \quad \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{KOH} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{Fe}(\mathrm{OH})_{3} \quad\{2\}$
$6.2 \mathrm{Mg}+\mathrm{N}_{2} \rightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2} \quad\{2\}$
$6.3 \mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \quad\{2\}$

QUESTION 7

Calculate the formula weight (FW) of the following substances.
$7.1 \quad \mathrm{CH}_{3} \mathrm{COOH}$
$7.2 \quad \mathrm{H}_{2} \mathrm{SO}_{4}$
7.3 KMnO4

QUESTION 8

Calculate the percentage composition of carbon in the following substances.
$8.1 \quad \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
$8.2 \quad \mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{2}$

QUESTION 9

2 moles of propane react with 8 moles of oxygen gas in a combustion reaction in the followingequation: $1 \mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
9.1 What is the limiting reactant\{6\}
9.2 How many moles of carbon dioxide are formed \{5\}
9.3 How much of the excess reactant is left over? \{5\}

QUESTION 10

10.1 Calculate the molarity of a solution prepared by dissolving 9.8 moles of solid NaOH in enough water to make 3.62 L of solution. What does your answer tell you?
10.2 You dissolve 152.5 g of CuCl_{2} in water to make a solution with a final volume of 2.25 L . What is its molarity? \{6\}

QUESTION 11

30 g of $\mathrm{C}_{3} \mathrm{H}_{8}$ burns in air to produce 70 g of CO_{2} using the following reaction $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}$ $+4 \mathrm{H}_{2} \mathrm{O}$.
11.1 Calculate the theoretical yield
11.2 Calculate the percent yield

QUESTION 12

Draw the atomic structure of Sodium (Na). Please indicate the number of electrons, neutrons, and protons with their respective charges the element has.

			π^{3}				\％${ }_{\text {\％}}^{\text {\％}}$	$\square^{\text {㫧 }}$－	戓发工
				Bix mo	$)^{\circ} \cos ^{\circ}$				NEN
			$\begin{aligned} & \ddot{\circ} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$	$\stackrel{9}{3}$	管发		$\underset{\sim}{\omega} \overline{\bar{\omega}} \omega$		
흐르흉				I^{N}	$\mathrm{N}^{\circ} \mathrm{E}$		命㐫へ		
鳕亳			$\text { 弈 } 0^{i}$				留㐭0		
	$\frac{y_{0}^{2}}{2 \times 5} c^{8}$						品亩の		
	$\chi^{\text {a }}$	輷 $0^{\text {O }}$	裙落			$\varliminf^{\text {gig }}$	あらい		
			$\text { 路咅 } \frac{\text { I }}{\infty}$	$\text { 毅管 } 0^{2}$		π°			
8 0 音 告						0^{2}	$\infty \leqq$		
z 亳 咅							$\cdots \stackrel{ }{0}$		
$\begin{aligned} & \text { 듬 } \\ & \text { 苟 } \end{aligned}$				$7^{\circ} \circ$		$\text { 紋 } 0^{N}$	市戸		
으으ํ					$\text { 認 }{ }^{\text {会 }}$	N_{6}^{∞}	N $\overline{\text { ¢ }}$		
5				言	悥悥亏 ${ }^{\text {¢ }}$			$\square^{\text {a }}$	$\stackrel{\omega}{>} \overline{\bar{\Sigma}}$ 心
長				岛言 $0^{\text {O }}$		Zio $\underbrace{\text { EN }}$	答吅号		今 $\overline{>} \boldsymbol{\sim}$
稁			湲宸		$\mathrm{Sa}^{\text {c }}$	$\frac{D_{0}}{\omega}$		$\left.\right\|^{2}$	
							$\text { 苞管 } C 𠃌^{\text {a }}$	0^{∞}	
							$\text { 敌言 } \Omega^{\text {方 }}$	䀼亭T	フら気
			器言		흔출				$\text { 领皆 } \frac{T}{D}^{N}$

